skip to main content


Search for: All records

Creators/Authors contains: "Rudawski, Nicholas G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Walters, Keisha (Ed.)
    Abstract

    Goldbeating is the ancient craft of thinning bulk gold (Au) into gossamer leaves. Pioneered by ancient Egyptian craftsmen, modern mechanized iterations of this technique can fabricate sheets as thin as ∼100 nm. We take inspiration from this millennia-old craft and adapt it to the nanoscale regime, using colloidally synthesized 0D/1D Au nanoparticles (AuNPs) as highly ductile and malleable nanoscopic Au ingots and subjecting them to solid-state, uniaxial compression. The applied stress induces anisotropic morphological transformation of AuNPs into 2D leaf form and elucidates insights into metal nanocrystal deformation at the extreme length scales. The induced 2D morphology is found to be dependent on the precursor 0D/1D NP morphology, size (0D nanosphere diameter and 1D nanorod diameter and length), and their on-substrate arrangement (e.g., interparticle separation and packing order) prior to compression. Overall, this versatile and generalizable solid-state compression technique enables new pathways to synthesize and investigate the anisotropic morphological transformation of arbitrary NPs and their resultant emergent phenomena.

     
    more » « less
    Free, publicly-accessible full text available August 18, 2024
  2. Rigorous coupled wave analysis (RCWA) is conducted on in situ spectroscopic ellipsometry data to understand profile evolution during film deposition inside nanotrenches. Lithographically patterned SiO 2 nanotrenches are used as test structures. The nanotrenches are 170 nm wide at the top with a taper angle of 4.5° and are 300 nm in depth. Atomic layer deposition of ZnO is used as a model process where the thickness (cycles) of the film is varied from 0 (0 cycles) to 46 nm (300 cycles). The analysis predicts transient behavior in deposition affecting film conformality and changes to the trench taper angle. In the process, the aspect ratio varies from 2.05 at the start of the process to 6.67 at the end. The model predicts changes in the refractive index of the ZnO film as a function of thickness. The real and imaginary parts of the refractive index at a wavelength of 350 nm change from 1.81 to 2.37 and 0.25 to 0.87, respectively. Scanning electron microscopy cross sections confirm thickness at the top and bottom of the trench to within 13% of those predicted by RCWA. The experimentally measured conformality degrades as film deposition proceeds from 97.3% at 100 cycles to 91.1% at 300 cycles. These results demonstrate the potential of using RCWA for continuous and in situ monitoring of growth inside 3D nanostructures. 
    more » « less
  3. The growth of atomic layer deposited (ALD) Al2O3 on planar ZnSe substrates is studied using in situ spectroscopic ellipsometry. An untreated ZnSe surface requires an incubation period of 27 cycles of ALD Al2O3 before film growth is observed. Pretreating the surface with an ultraviolet generated ozone lowers the incubation to 17 cycles, whereas a plasma-enhanced ALD Al2O3 process can further lower the incubation period to 13 cycles. The use of ozone or plasma-activated oxygen species on ZnSe is found to create ZnO and SeO2, which are responsible for converting ZnSe from a hydrophobic to a hydrophilic surface. The interfacial layer between Al2O3 and ZnSe is mapped using high-resolution transmission electron microscopy and scanning transmission electron microscopy/energy dispersive spectroscopy. SeO2 is volatile and leaves a zinc-rich interface, which is 4.3 nm thick for the ultraviolet generated ozone pretreated sample and 2.5 nm for the plasma-enhanced ALD process.

     
    more » « less